Wednesday, January 17, 2018

ELEMENTS OF IMAGE INTERPRETATION AND ANALYSIS

Elements of Image Interpretation

 

 

       Image interpretation requires explicit recognition of eight elements of image interpretation that form the framework and understanding of an image

Ø  Shape

Ø  Size

Ø  Tone

Ø  Texture

Ø  Shadow

Ø  Site

Ø  Association

Ø  Pattern

 

 

Shape

Shape refers to the general form, structure, or outline of individual objects.

Shape can be a very distinctive clue for interpretation

      Many natural and human-made features have unique shapes.

Often used are adjectives like linear, curvilinear, circular, elliptical, radial, square, rectangular, triangular, hexagonal, star, elongated, and amorphous.

 

      Shadow

       They are helpful in interpretation as it may provide an idea of the profile and relative height of a target or targets

       However, shadows can also reduce or eliminate interpretation in their area of influence, since targets within shadows are much less discernible from their surroundings

       Shadow is also useful for enhancing or identifying topography and landforms.

 

 

       Size

       Size of objects in an image is a function of scale. It is important to assess the size of a target relative to other objects in a scene, as well as the absolute size, to aid in the interpretation of that target.

       For example, to distinguish zones of land use, an area with a number of buildings in it, large buildings such as factories or warehouses would suggest commercial property, whereas small buildings would indicate residential use

 

 

    Tone/ Color

     Refers to the average brightness of an area or, in the case of color imagery, to the dominant color of the region

Depends on the nature of the surface in the ankles of observation and illumination.

Smooth surfaces behave like specular reflectors, they tend to reflect radiation in a single direction

These features may appear bright or dark

Rough surfaces behave as diffuse reflectors.

Scatter radiation in all directions.

 

 

 

       Texture

       Texture refers to the arrangement and frequency of tonal variation in particular areas of an image.

       Rough textures would consist of a tone where the grey levels change abruptly in a small area. Whereas smooth textures would have very little tonal variation.

       Smooth textures are such as fields, water, or grasslands. Rough surfaces are such as a forest canopy, results in a rough textured appearance

 

 

       Pattern

       Refers to the spatial arrangement of visibly discernible objects in an image.

       Typically an orderly repetition of similar tones and textures will produce a distinctive and ultimately recognizable pattern.

       Orchards with evenly spaced trees and urban streets with regularly spaced houses are good examples of the pattern.

 

 

      Association

       This takes into account the relationship between other recognizable objects or features in proximity to the target of interest.

       The identification of features that one would expect to associate with other features may provide information to facilitate identification.

       For example, commercial properties may be associated with proximity to major transportation routes, whereas residential areas would be associated with schools, playgrounds, and sports fields.

 

 

       Site

       Refers to a feature's position with respect to topography and drainage.

  Some things occupy a distinctive topographic position because of their function

    Sewage treatment facilities at the lowest feasible topographic position.

    Power plants located adjacent to water for cooling

 

 

 

 


Satellite Image Processing and Analysis


       Many image processing and analysis techniques have been developed to aid the interpretation of remote sensing images and to extract as much information as possible from the images.

       The choice of specific techniques or algorithms to use depends on the goals of each individual project

 

       Prior to data analysis, initial processing of the raw data is usually carried out to correct for any distortion due to the characteristics of the imaging system and imaging conditions

       These procedures include:

       Radiometric correction to correct for uneven sensor response over the whole image and

       Geometric correction to correct for geometric distortion due to Earth's rotation and other imaging conditions (such as oblique viewing)

Image processing techniques

       The techniques fall into three broad categories:

Image Restoration and Rectification

Image Enhancement

Image Classification

 

       Image Restoration

       Most recorded images are subject to distortion due to noise which degrades the image.

       Two of the more common errors that occur in multi-spectral imagery are striping (or banding) and line dropouts


       Striping (or banding)


 

       Dropped Lines are errors that occur in the sensor response and/or data recording and transmission which loses a row of pixels in the image.

 

Image Enhancement

       One of the strengths of image processing is that it gives us the ability to enhance the view of an area by manipulating the pixel values, thus making it easier for visual interpretation.

       Techniques which we can use to enhance an image are such as Contrast Stretching and Spatial Filtering.

 

       Contrast Stretching

       Contrast enhancement involves changing the original values of image pixels so that more of the available range is used, this then increases the contrast between features and their backgrounds.

 

       Spatial Filtering

       Spatial filters are designed to highlight or suppress features in an image based on their spatial frequency.

       The spatial frequency is related to the textural characteristics of an image

       Rapid variations in brightness levels ('roughness') reflect a high spatial frequency; 'smooth' areas with little variation in brightness level or tone are characterized by a low spatial frequency

 

Image Classification

       In digital images processing, two methods are used to classify an image:

        Unsupervised Classifications and Supervised Classifications.

 

       Unsupervised Classifications

       This is a computerized method without direction from the analyst in which pixels with similar digital numbers are grouped together into spectral classes using statistical procedures such as nearest neighbor and cluster analysis

       The resulting image may then be interpreted by comparing the clusters produced with maps, air photos, and other materials related to the image site

 

  Supervised classification

       In this classification, the spectral features of some areas of known land cover types are extracted from the image by the analyst.

       These areas are known as the "training areas".

       Every pixel in the whole image is then classified as belonging to one of the classes depending on how close its spectral features are to the spectral features of the training areas.

 

 


True and false colour Composites/images


       To generate colour images the three grey scale images need to be displayed in the three primary colours red, green and blue.

        A combination of different proportions of the three primary colours gives the full spectrum of colours.

 

       When images acquired in the red, green and blue parts of the electromagnetic spectrum are displayed in red, green and blue colour, respectively, the output composite image is called a true or natural colour image.

        On a true colour image, the colours of an object are similar to the colours the human eye perceives in real life – i.e., a green tree appears green, a blue lake appears blue, etc.

 

       Any image acquired in any part of the EM spectrum can be coded in any colour to generate a colour composite image.

       However, the colours in the output image will vary depending on the choice of the images and the choice of the colour in which they are displayed.

        As the colours of objects on the output image are different from what a human eye perceives, these images are called false colour composites.

 

 

 

 


 

Tuesday, January 9, 2018

GE 245- GROUP ASSIGNMENTS ON APPLICATIONS OF REMOTE SENSING (FOR CLASS PRESENTATIONS) JAN 2018

GE 245- GROUP ASSIGNMENTS ON APPLICATIONS OF REMOTE SENSING (FOR CLASS PRESENTATIONS) JAN 2018

1. Remote sensing offers a synoptic view of the spatial distribution and dynamics of hydrological phenomena, often unattainable by traditional ground surveys. With examples discuss this contention.(SOLIDARITY GROUP)
2. Discuss the role of remote sensing in monitoring different land-use changes(TUMAINIGROUP)
3. Explain how multitemporal analyses of remotely sensed data provide a unique perspective of how cities evolve.(TEACHERS GROUP)
4. Agriculture plays a dominant role in the economies of both developed and developing countries. Describe how remote sensing tools are used as mapping tools to classify crops, examine their health and viability, and monitor farming practices. (WE ARE IN THE SKY GROUP)
5. Both commercial and non-commercial forestry utilises a particularly diverse range of remote sensing applications. Explain this statement by giving clear examples. (WHITE ANGEL GROUP)
6. Remote sensing provides a means of quickly identifying and delineating various forest types, a task that is difficult and time-consuming using traditional ground surveys. How far is this statement true?(GLORIUS GROUPS)
7. State how remote sensing can be used to detect and monitor forest fires and re-growth following a fire. (GOLDEN GROUP)
8. Describe the applications of remote sensing in the following geological/geomorphologic activities:
              (a) Mineral exploration (b) Geologic Unit Mapping (PLATO GROUP)
             (c) Volcanism (d) Glacial/ice depletion (NYERERE 2A GROUP)
 9. Explain the application of remote sensing in the ocean and coastal monitoring.(PATRIOTIC GROUP) 
10. What are the utilities of remote sensing in mapping science?(NEW LIGHT GROUP) 
11. Explain how remote sensing can be a tool for weather monitoring and forecast. (EDUCATION FIRST GROUP) 
12. How can remote sensing imagery be used to estimate population size, distribution, and quality of life?(WISDOM GROUP) 
13. Explain the application of remote sensing in hazard mitigation. (LIBERATION GROUP) 
14.“One of the sensitive areas to be managed carefully in Tanzania is the wildlife sector”. With examples from the literature discuss this claim. (REVOLUTION GROUP) 
15. How is remote sensing important in monitoring Land use and land cover changes of the environment? (UHURU GROUP) 
16. Monitoring urban growth and change is one of the questions social scientists, urban planners and decision-makers deal with most frequently. Explain the usefulness of remote sensing tool in monitoring urban growth and change. (HOPE GROUP) 
17. “Remote sensing is primarily used in the context of disease mapping”. Elaborate this contention (REPUBLICAN GROUP) 

18. How can remote sensing be utilized in identifying soil properties, evaluating crop productivity and crop health? (VISION GROUP) 

19. Explain the application of remote sensing in watershed management (PEACE & LOVE GROUP) 
20. Illustrate the applications of remote sensing in Meteorological Sciences (HONEST GROUP)
21. Explain how a remote sensing tool can be used in water resources management (BRIGHT GROUP)
22. “Remote Sensing is a very important tool in coastal resource mapping”. Elaborate this statement. (RANGERS GROUP)
NB:
·        It is advised that everyone should make his/her own copy of this sheet of questions for studying.
·        Each presentation will last for ten minutes. It is advised that each group go digital by presenting their work in powerpoint to attract more scores
·        Every member of a particular group should be present during presentation
·        Which group should present on a particular day, remain in the hands of the course instructors i.e the instructors will decide promptly in class on which group to present

·        Presentation will be conducted on Fridays starting from 19th January 2018